Autres vendeurs sur Amazon
+ 0,01 € Livraison
90 % positif au cours des 12 derniers mois

Téléchargez l'application Kindle gratuite et commencez à lire des livres Kindle instantanément sur votre smartphone, tablette ou ordinateur - aucun appareil Kindle n'est requis. En savoir plus
Lisez instantanément sur votre navigateur avec Kindle Cloud Reader.
Utilisation de l'appareil photo de votre téléphone portable - scannez le code ci-dessous et téléchargez l'application Kindle.

En savoir plus
Suivre l'auteur
OK
Teaching and Learning in Information Retrieval Broché – 23 août 2016
Prix Amazon | Neuf à partir de | Occasion à partir de |
Format Kindle
"Veuillez réessayer" | — | — |
Broché
"Veuillez réessayer" | 100,22 € | 100,07 € | — |
Téléchargement
"Veuillez réessayer" |
—
| — | — |
- La livraison est GRATUITE sans minimum d'achats (0,01€ pour les livres). Les membres Amazon Prime bénéficient de livraisons gratuites illimitées toute l'année
- Choisissez parmi 20 000 points retrait en France et en Belgique, incluant points relais et consignes automatiques Amazon Lockers
- Trouvez votre point retrait et ajoutez-le à votre carnet d’adresses
- Sélectionnez cette adresse lors de votre commande
Améliorez vos achats
With information retrieval a growing field of research, teaching it requires new resources. This book aims to provide theoretical and practical ideas for teaching IR, a topic which has up to now suffered from a lack of literature on its pedagogical aspects.
- Nombre de pages de l'édition imprimée232 pages
- LangueAnglais
- ÉditeurSpringer
- Date de publication23 août 2016
- Dimensions15.49 x 1.35 x 23.5 cm
- ISBN-103662506777
- ISBN-13978-3662506776
Description du produit
Biographie de l'auteur
Efthimis N. Efthimiadis
Efthimis Efthimiadis obtained a Ph.D in Information Science from City University London in 1992. His research focused on the design of front-end interfaces that improve access to databases, and on the evaluation of information retrieval systems. Further interests included the application of probabilistic techniques to information retrieval and in methods that incorporate user preferences and user interaction in the retrieval techniques. Efthimiadis' research in the area of query expansion was concerned with the evaluation of ranking algorithms and the study of the searching behaviour of endusers. Professor Efthimiadis taught courses on the principles of information retrieval, database design, online search techniques, internet access, introduction to information science, business information and medical informatics.
Juan M. Fernández-Luna
Juan Manuel Fernández-Luna got his Computer Science degree in 1994 at the University of Granada, Spain. In 2001 he got his PhD at the same institution, working on a thesis in which several retrieval models based on Bayesian networks for Information Retrieval where designed. Currently, his main research area is XML retrieval, although he also is working in collaboration with Juan F. Huete in collaborative IR, recommender systems, learning to rank and heterogeneous data source integration. He has got experience organizing international conferences and workshops, among them the I and II International Workshops on Teaching and Learning of Information Retrieval. He has been co-editor of several journal special issues, highlighting the special Information Retrieval issue on Teaching and Learning of Information Retrieval. He also belongs to the programme committees of the main IR conferences.
Juan F. Huete
Juan F. Huete is assistant professor at the Department of Computer Science and Artificial Intelligence at the University of Granada. He got his PhD in 1995, researching on the uncertainty treatment in Artificial Intelligence under the formalism of Bayesian networks. From 1998, his research interest is Information Retrieval, designing retrieval models based on these graphical models. He is currently also working in the Recommender System field, although other fields like collaborative IR or learning to rank. He has been co-editor of a special Information and Processing Management issue on Bayesian networks and Information Retrieval. He has co-organized several international conferences, as well as workshops. Among these last types of events, the following three could be highlighted: I and II International Workshop on Teaching and Learning of Information Retrieval and the SIGIR'07 Workshop on Information Retrieval and Graphical Models.
Andrew MacFarlane
Andrew MacFarlane is a Senior Lecturer in the Department of Information Science at City University, and currently co-directs the Centre of Interactive Systems Research with Prof Stephen Robertson of Microsoft Research Cambridge. He got his PhD Information Science from the same Department under the supervision of Prof Robertson and Dr. J.A. McCann (now at Imperial College London) in 2000. His research interests currently focus on a number of areas including parallel computing for information retrieval, disabilities and Information Retrieval (dyslexia in particular), AI techniques for Information Retrieval and Filtering, and Open Source Software Development. He is the Chair of the BCS Information Retrieval Specialist Group and is a long standing member of that SG.
Vous n'avez pas encore de Kindle ? Achetez-le ici ou téléchargez une application de lecture gratuite.
Détails sur le produit
- Éditeur : Springer; Softcover reprint of the original 1st ed. 2011 édition (23 août 2016)
- Langue : Anglais
- Broché : 232 pages
- ISBN-10 : 3662506777
- ISBN-13 : 978-3662506776
- Poids de l'article : 454 g
- Dimensions : 15.49 x 1.35 x 23.5 cm
À propos de l'auteur

Découvrir d'autres livres de l'auteur, voir des auteurs similaires, lire des blogs d'auteurs et plus encore
Commentaires client
5 étoiles (0%) |
|
0% |
4 étoiles (0%) |
|
0% |
3 étoiles (0%) |
|
0% |
2 étoiles (0%) |
|
0% |
1 étoile (0%) |
|
0% |
Les avis clients, y compris le nombre d’étoiles du produit, aident les clients à en savoir plus sur le produit et à décider s'il leur convient.
Pour calculer le nombre global d’étoiles et la ventilation en pourcentage par étoile, nous n'utilisons pas une simple moyenne. Au lieu de cela, notre système prend en compte des éléments tels que la date récente d'un commentaire et si l'auteur de l'avis a acheté l'article sur Amazon. Les avis sont également analysés pour vérifier leur fiabilité.
En savoir plus sur le fonctionnement des avis clients sur Amazon